

# New cavity-enhanced detection methods for aerosols and gases Rebecca Washenfelder



#### NOAA CSD has pioneered field measurements using cavity ring-down spectroscopy:



Aerosol optical extinction

Deployed on NOAA and NASA aircraft during four field campaigns.

Used to understand visibility, climate forcing, and vertical structure.



Nighttime nitrogen oxide species ( $NO_3$  and  $N_2O_5$ ) Deployed on NOAA and NSF aircraft during five field campaigns. Used to understand heterogeneous chemistry and hydrocarbon oxidation.

Cavity-enhanced instruments combine extinction spectroscopy with long path lengths.

New broadband and open path instruments can address new scientific questions.



# **Broadband Methods to Measure Aerosols and Gases**









## **Broadband Methods to Measure Aerosols and Gases**





Broadband cavity-enhanced spectroscopy can measure multiple species simultaneously.

Initially we have focused on organic aerosol questions.



# **Broadband Methods Applied to Organic Aerosol Questions**



#### **Laboratory:**

Does exposure to ammonia cause carbonyl-containing organic aerosol to absorb light?



Yes, some carbonyl-containing particles react with high concentrations of ammonia to form absorbing chromophores.

Washenfelder et al, 2013 Flores et al, 2014

Field:

Does glyoxal contribute to organic aerosol mass in Los Angeles?





Glyoxal contributes 0 - 4%. Other species play a more important role.

Washenfelder et al, 2011



# **Open Path Methods to Measure Aerosol Extinction**





#### **Major Advantages:**

- Aerosol humidity and temperature are identical to ambient conditions.
- Large diameter particles are not lost.

# Initial measurements at the Boulder Atmospheric Observatory Tower

#### **Extinction by aerosol in a single cloud:**



Gordon et al., in preparation



### **Future Scientific Directions**



#### **Short-term:**

- 1. Expand our broadband measurements into the deeper UV spectral region, using new light sources and mirrors.
- Scientific goals: Brown carbon absorption, formaldehyde, sulfur dioxide, bromine oxide.
- 2. Develop **very** broadband measurements (e.g. 300 400 nm) that imitate satellite observations of gases and aerosols.
- Scientific goals: Satellite validation, measurement of multiple trace gas species.
- 3. Develop an aircraft instrument to measure open path aerosol extinction.
- Scientific goals: Constrain radiative forcing, satellite validation.

Long-term: Use broadband and open path instruments for satellite validation.



